N2 – Thermochemistry – A Review

Some Background Knowledge Definitions		
Not all the definitions from the notes – you still have to take notes!		
Energy – capacity to do work or produce heat		
Potential Energy – due to position or composition		
Kinetic Energy - due to motion		
Electrical Energy – flow of electrical charge		
Thermal Energy – molecular motion		
Light/Radiant Energy – energy transitions in an atom		
Nuclear Energy – potential energy in atomic nuclei		
Chemical Energy – due to structure of atoms/bonds		
Law of Conservation of Energy –		
cannot create or destroy energy		
1 st Law of Thermodynamics –		
total energy content of universe is constant		
State Function –		
depends only on present state, not pathway to get there		

Endothermic		
System absorbs energy	Surroundings release energy	
System energy increases	Surrounding energy decreases	
+ q _{system}	$-q_{surroundings}$	
If you touch the container YOU feel cold – the system is		
taking heat away from YOU! Your thermometer is in the		
SURROUNDINGS so the temperature it reads decreases!		

Exothermic		
System releases energy	Surroundings gain energy	
System energy decreases	Surrounding energy increases	
- q _{system}	+ Qsurroundings	
If you touch the container YOU feel hot – the system is		
releasing heat towards YOU! Your thermometer is in the		
SURROUNDINGS so the temperature it reads increases!		

<u>Q#1</u> Identical amounts of heat are applied to 50 g blocks of lead, silver, and copper, all at an initial temp of 25°C. Which block will have the largest increase in temp?

<u>Q#2</u> Determine the energy required to convert 21.1 grams of ice at -6° C to steam at 100°C

Q#3 A sample of barium chloride is increased in temperature by 3.8C when the sample absorbed 2.4×10^2 J of heat energy. Calculate the number of mole sof barium chloride in the sample if its molar heat capacity is 75.1 J/mol•K

<u>Q#4</u> The temperature of a 700.0-g bar of iron decreases by 10.0°C when the iron is plunged into 500.0 g of water. What is the temperature increase of the water, assuming that no heat is lost in the transfer? ($C_{Fe} = 0.45 \text{ J/g}^{\circ}C$)

<u>Q#5</u> 50.0 g of water at 22 °C is mixed with 125 g of water initially at 36 °C. What is the final temperature of the water after mixing, assuming no heat is lost to the surroundings?

N2 – Thermochemistry – A Review

Some Background Knowledge Definitions		
Not all the definitions from the notes – you still have to take notes!		
Energy – capacity to do work or produce heat		
Potential Energy – due to position or composition		
Kinetic Energy - due to motion		
Electrical Energy – flow of electrical charge		
Thermal Energy – molecular motion		
Light/Radiant Energy – energy transitions in an atom		
Nuclear Energy – potential energy in atomic nuclei		
Chemical Energy – due to structure of atoms/bonds		
Law of Conservation of Energy –		
cannot create or destroy energy		
1 st Law of Thermodynamics –		
total energy content of universe is constant		
State Function –		
depends only on present state, not pathway to get there		

Endothermic		
System absorbs energy	Surroundings release energy	
System energy increases	Surrounding energy decreases	
+ q _{system}	- q _{surroundings}	
If you touch the container YOU feel cold – the system is		
taking heat away from YOU! Your thermometer is in the		
SURROUNDINGS so the temperature it reads decreases!		

Exothermic		
System releases energy	Surroundings gain energy	
System energy decreases	Surrounding energy increases	
- q _{system}	+ qsurroundings	
If you touch the container YOU feel hot – the system is		
releasing heat towards YOU! Your thermometer is in the		
SURROUNDINGS so the temperature it reads increases!		

<u>Q#1</u> Identical amounts of heat are applied to 50 g blocks of lead, silver, and copper, all at an initial temp of 25°C. Which block will have the largest increase in temp?

<u>Q#2</u> Determine the energy required to convert 21.1 grams of ice at -6° C to steam at 100°C

Q#3 A sample of barium chloride is increased in temperature by 3.8C when the sample absorbed 2.4×10^2 J of heat energy. Calculate the number of mole sof barium chloride in the sample if its molar heat capacity is 75.1 J/mol•K

<u>Q#4</u> The temperature of a 700.0-g bar of iron decreases by 10.0°C when the iron is plunged into 500.0 g of water. What is the temperature increase of the water, assuming that no heat is lost in the transfer? ($C_{Fe} = 0.45 \text{ J/g}^{\circ}C$)

Q#5 50.0 g of water at 22 °C is mixed with 125 g of water initially at 36 °C. What is the final temperature of the water after mixing, assuming no heat is lost to the surroundings?